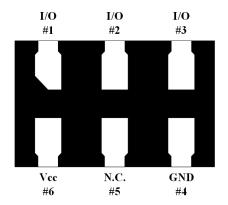
LOW CAPACITANCE TVS DIODE ARRAY

Features

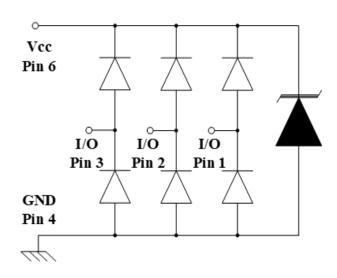
- 56 Watts Peak Pulse Power per Line (tp=8/20 μ s)
- \bullet Protects High Speed I/O Lines & V_{BUS}
- Low Clamping Voltage
- RoHS Compliant
- IEC61000-4-2 (ESD) ±15kV (air), ±10kV (contact)
- IEC61000-4-4 (EFT) 40A (5/50ηs)
- IEC61000-4-5 (LIGHTING) 3.5A (8/20 μs)

Applications

- Digital Visual Interface
- USB Ports
- LCD TV
- Serial ATA
- Firewire Ports
- Customer Premise Equipment
- HDMI Ports
- Infiniband Transceiver Protection


Mechanical Characteristics

- DFN1510TP6Package
- Molding Compound Flammability Rating: UL 94V-O
- Weight 3.0 Millgrams (Approximate)


• Reel Size: 7 inch

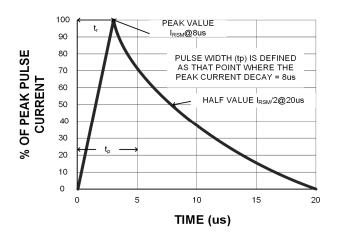
Lead Finish : Lead FreeDevice Marking : UR53

Dimensions DFN1510TP6

Pin Configuration

Absolute Maximum Ratings(Tamb=25°C unless otherwise specified)

PARAMETER	SYMBOL	VALUE	UNITS
Peak Pulse Power (tp=8/20μs waveform)	P_{PP}	56	Watts
Lead Soldering Temperature	$T_{ m L}$	260 (10 sec.)	$^{\circ}\!\mathbb{C}$
Operating Temperature Range	T_{J}	-40 ~ 125	$^{\circ}\!\mathbb{C}$
Storage Temperature Range	T_{STG}	-55 ~ 150	$^{\circ}\!\mathbb{C}$


Rer.A 09.2024 Kingwell Corp. 1/9

Electrical Characteristics (TA=25°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Reverse Working Voltage	V _{RWM}				5	V
Breakdown Voltage	V_{BR}	lτ = 1mA	6			V
Reverse Leakage Current	I _R	V _{RWM} = 5V			0.1	μA
Clamping Voltage	V _C	IPP = 1A (8 x 20 µs pulse)			9.8	V
Clamping Voltage	V _C	IPP = 2A (8 x 20 μs pulse)			13	V
Clamping Voltage	Vc	IPP = 3.5A (8 x 20 µs pulse)			16	V
Transmission Line Pulse	TLP	I _{OUT} = 1A		8.5		V
Transmission Line Pulse	TLP	I _{OUT} = 2A		11		V
Transmission Line Pulse	TLP	Iоит = 5 A		14		V
Junction Capacitance	CJ	V _R = 0V, f = 1MHz (I/O to I/O)		0.4		pF
Junction Capacitance	CJ	V _R = 0V, f = 1MHz (I/O to GND)		0.8		pF

Rer.A 09.2024 Kingwell Corp. 2/9

TYPIC CHARACTERISTICS

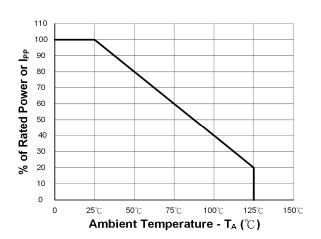
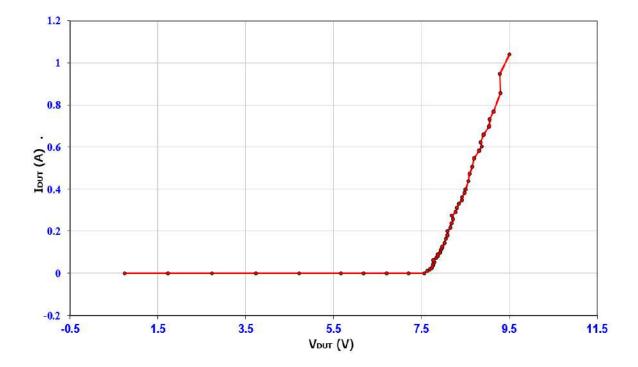
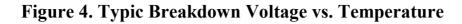




Figure 3. Clamping Voltage vs. Peak Pulse Current (TLP)

Rer.A 09.2024 Kingwell Corp. 3/9

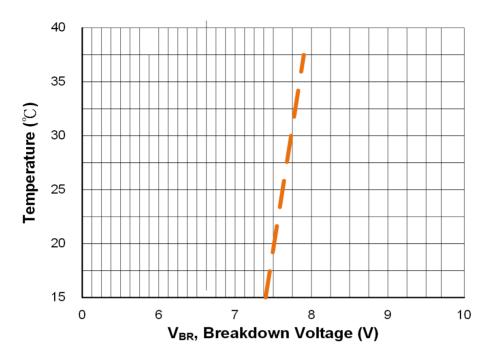
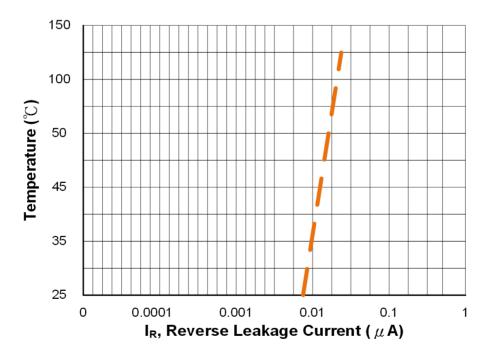
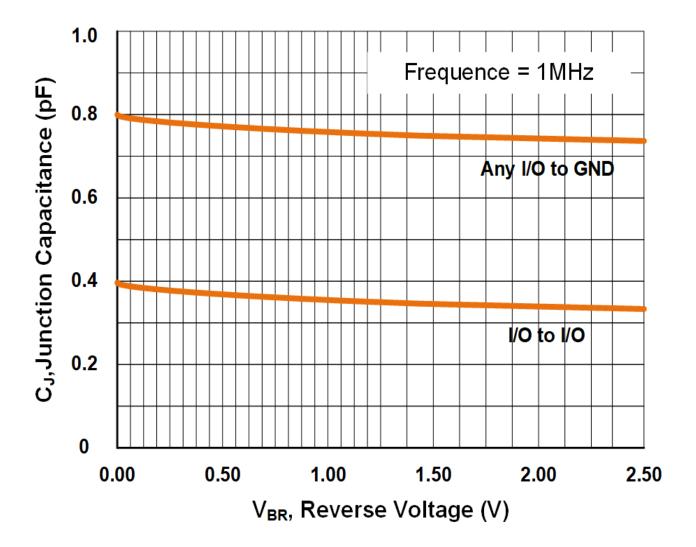
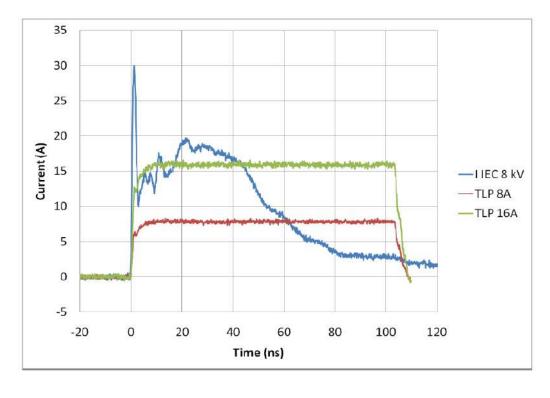




Figure 5. Typic Reverse Current vs. Temperature

Rer.A 09.2024 Kingwell Corp. 4/9


Figure 6. Typic Capacitance vs. Reverse Voltage

Rer.A 09.2024 Kingwell Corp. 5/9

Figure 7. Transmission Line Pulse (TLP)

Transmission Line Pulse (TLP) is a measurement technique used in the Electrostatic Discharge (ESD) arena to characterize performance attributes of devices under ESD stresses. TLP is able to obtain current versus voltage (I–V) curves in which each data point is obtained with a 100 ns long pulse, with currents up to 40 A. TLP was first used in the ESD field to study human body model (HBM) in integrated circuits, but it is an equally valid tool in the field of system level ESD. The applicability of TLP to system level ESD is illustrated in Figure 1, which compares an 8 kV IEC 61000–4–2 current waveform with TLP current pulses of 8 and 16 A. The current levels and time duration for the pulses are similar and the initial rise time for the TLP pulse is comparable to the rise time of the IEC 61000–4–2's initial current spike. This application note will give a basic introduction to TLP measurements and explain the datasheet parameters extracted from TLP for SDI Technology's protection products.

Comparison
Between 8 kV IEC
61000-4-2 and 8
A and 16 A TLP
Waveforms

Comparison of a CurrentWaveform of IEC 61000-4-2with TLP Pulses at 8 and 16 A.

The IEC 61000-4-2 ESD waveforms is true to the Standard and is shown here as captured on an oscilloscope.

The points A, B, and C show the points on the aveforms specified in IEC 61000-4-2.

Transmission Line Pulse (TLP) Version.

Rer.A 09.2024 Kingwell Corp. 6/9

Figure 8. Eye diagram on HDMI 1.4, USB 2.0 and

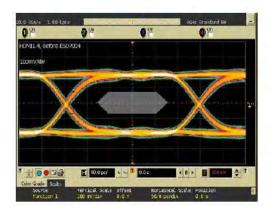


Fig. 8.1. @HDMI 1.4 mask at 3.4 Gbps per channel (Without Component)

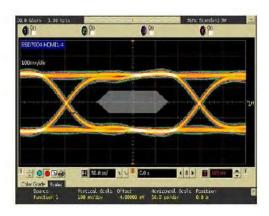


Fig. 8.2. @HDMI 1.4 mask at 3.4 Gbps per channel (With Component)

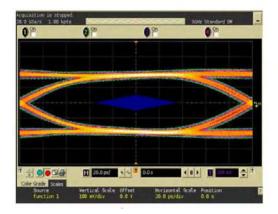


Fig. 8.3. @USB 2.0 mask at 3.2 Gbps per channel (Without Component)

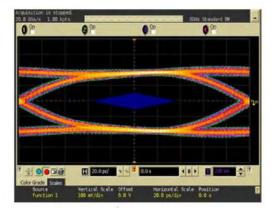


Fig. 8.4. @USB 2.0 mask at 3.2 Gbps per channel (With Component)

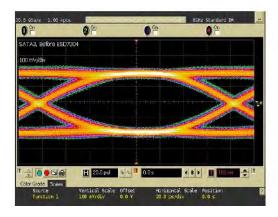
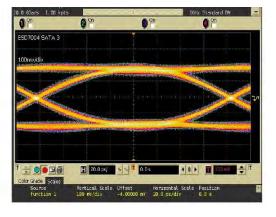
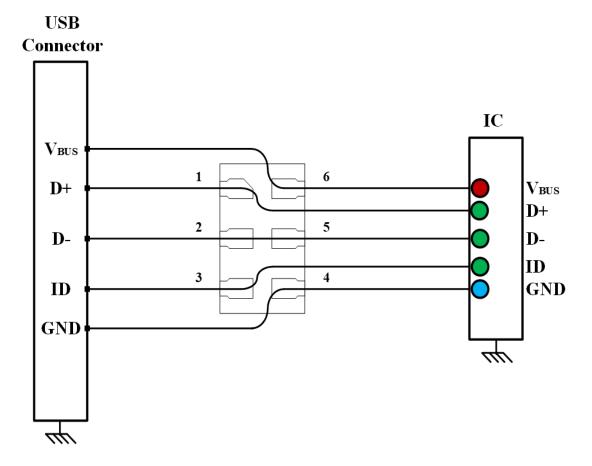


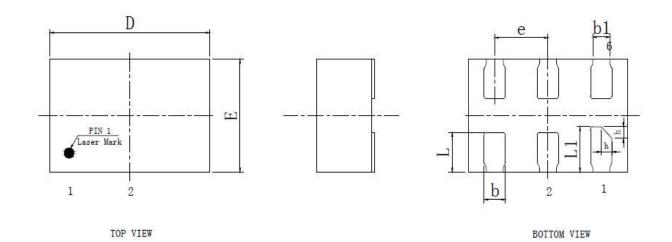
Fig. 8.5. @ESATA 2.0 mask at 3.8 Gbps per channel (Without Component)

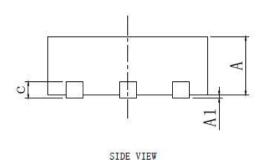



Fig. 8.6. @ESATA 2.0 mask at 3.8 Gbps per channel (With Component)

Rer.A 09.2024 Kingwell Corp. 7/9

Figure 10. Layout Guidelines


Steps must be taken for proper placement and signal trace routing of the ESD protection device in order to ensure the maximum ESD survivability and signal integrity for the application. Such steps are listed below.


- 1. Place the ESD protection device as close as possible to the I/O connector to reduce the ESD path to ground and improve the protection performance.
- 1.1. In USB 2.0 applications, the ESD protection device should be placed between the AC coupling capacitors and the I/O connector on the TX differential lanes as shown in below drawing In this configuration, no DC current can flow through the ESD protection device preventing any potential latch-up condition. For more information on latchup considerations, see below description on below drawing.
- 2. Make sure to use differential design methodology and impedance matching of all high speed signal traces.
- 2.1. Use curved traces when possible to avoid unwanted reflections.
- 2.2. Keep the trace lengths equal between the positive and negative lines of the differential data lanes to avoid common mode noise generation and impedance mismatch.
- 2.3. Place grounds between high speed pairs and keep asmuch distance between pairs as possible to reduce crosstalk.

Rer.A 09.2024 Kingwell Corp. 8/9

DFN1510TP6 PACKAGE OUTLINE & DIMENSIONS

SYMBOL	MILLIMETER			
SIMBOL	MIN	NOM	MAX	
A	0.50	0.55	0.60	
Al	0	0. 02	0.05	
Ъ	0. 15	0.20	0.25	
bl	0.16REF			
C	0.15REF			
D	1. 40	1. 50	1. 60	
Е	0. 90	1.00	1. 10	
e	0. 50BSC			
L	0.30	0.35	0.40	
L1	0.35	0.40	0.45	
h	0. 05	0.10	0. 15	

Rer.A 09.2024 Kingwell Corp. 9/9